Precise evaluation of motor and non-motor dysfunction in Parkinson's disease using the KINARM

Project lead: Dr. Ron Levy

Pauline Gaprielian, Dr. Stephen H. Scott, Dr. Giovanna Pari

Queen's University, Kingston General Hospital, Kingston, ON SEAMO

June 6, 2018

Parkinson's disease

Common neurodegenerative disease related to loss of dopamine

- Tremor
- Rigidity

Clinical

exam

- Akinesia/Bradykinesia
- Postural instability

By William Richard Gowers (1845–1915) after St. Leger (unknown dates) - Herter, Christian Archibald (1907) [1892]. "Fig 66 — Paralysis agitans. (After St. Leger.) (Gowers)". Diagnosis of Organic Nervous Diseases (2nd ed.). New York and London: G. P. Putnam's Sons. p. 589. Retrieved 2011-03-24., PD-US, https://en.wikipedia.org/w/index.php?curid=31434429 Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results

3.4 FINGER TAPPING

- 0: Normal: No problems.
- 1: Slight: Any of the following: a) the regular rhythm is broken with one or two interruptions or hesitations of the tapping movement; b) slight slowing; c) the amplitude decrements near the end of the 10 taps.
- 2: Mild: Any of the following: a) 3 to 5 interruptions during tapping; b) mild slowing; c) the amplitude decrements midway in the 10-tap sequence.
- 3: Moderate: Any of the following: a) more than 5 interruptions during tapping or at least one longer arrest (freeze) in ongoing movement; b) moderate slowing; c) the amplitude decrements starting after the 1st tap.
- 4: Severe: Cannot or can only barely perform the task because of slowing, interruptions or decrements.

3.5 HAND MOVEMENTS

3.6 PRONATION-SUPINATION MOVEMENTS OF HANDS

3.7 TOE TAPPING

3.8 LEG AGILITY

3.9 ARISING FROM CHAIR

3.14 GLOBAL SPONTANEITY OF MOVEMENT (BODY BRADYKINESIA)

Movement Disorders Vol. 23, No. 15, 2008, pp. 2129–2170 © 2008 Movement Disorder Society Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results

3.3 RIGIDITY

- 0: Normal: No rigidity.
- Slight: Rigidity only detected with activation maneuver.
- Mild: Rigidity detected without the activation maneuver, but full range of motion is easily achieved.
- Moderate: Rigidity detected without the activation maneuver; full range of motion is achieved with effort.
- Severe: Rigidity detected without the activation maneuver and full range of motion not achieved.

Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results

3.12 POSTURAL STABILITY

Normal: No problems: Recovers with one or two steps.
Slight: 3-5 steps, but subject recovers unaided.
Mild: More than 5 steps, but subject recovers unaided.
Moderate: Stands safely, but with absence of postural response; falls if not caught by examiner.
Severe: Very unstable, tends to lose balance spontaneously or with just a gentle pull on the shoulders.

Movement Disorders Vol. 23, No. 15, 2008, pp. 2129–2170 © 2008 Movement Disorder Society

Hypothesis

Robotic assessment will be a rapid, simple, automated, and objective tool to quantitatively assess the progression of parkinsonian symptoms and track the effects of therapy.

Impact: <u>Objectivity and repeatability</u> are vital to improve assessment of the effects of novel drugs or surgical therapeutic neuromodulation in patients (e.g. complete blinding of clinical tests).

KINARM robotic assessment

Exoskeleton

Endpoint

Patient group 1

- Initial study in 7 subjects with deep brain stimulators with advanced PD
- Randomly tested four conditions

OFF dopamine and OFF	OFF dopamine and ON Deep
Deep brain stimulation	brain stimulation
ON dopamine and OFF	ON dopamine and ON Deep
Deep brain stimulation	brain stimulation

• Neurologist blinded

Assessment of motor performance **Clinical exam KINARM** motor tasks **UPDRS: Bradykinesia** "Reach toward target" "Hit the falling targets" o Cursor Falling targets Target Hand . سنا Virtual direction paddles 0.4 ** * * ** 30 0.3 0.35 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Maximum speed (m/s) 25 0.25 Score (mean +/- SEM) 20 0.2 15 0.15 10 0.1 5 0.05 0 0 0 Meds & Meds & **Baseline Meds** DBS Baseline Meds DBS Baseline Meds DBS Meds & DBS DBS DBS

Postural instability

"Move your arm back after being pushed"

KINARM task errors 1

"Reach away from target"

KINARM task errors 2

"Hit targets but not distractors"

Highlights

- So maybe KINARM is a **precise** and **objective** assessment?
- Possibly be adopted for clinical users and standardized reports are generated that compare a subject's performance to other patients or healthy controls?
- Can it be used to measure a **broader base of sensory, motor and cognitive impairments** due to disease progression or the effect of treatment?

Require testing in a larger and less severe patient group

TRANSLATION TO THE CLINIC

Are we capturing all the data???

Patient group 2

- Study in 26 subjects with moderate PD (addition of Dr. Stuart Reid)
- Tested two conditions

• Neurologist not blinded

If a patient took a dopaminergic medication could the neurologist detect it with the UPDRS?

ROC Curves

If a patient took a dopaminergic medication could the KINARM detect?

It was deigned for spasticity!

So we are redesigning analysis to better capture rigidity...

Subject with PD

TRANSLATION TO THE CLINIC

Can we capture the data in the clinic and not the lab???

Patient group 3

• Study in 24 subjects with severity range of PD

Hand tracker used to capture bradykinesia, dyskinesia, and tremor in the clinic

Task

Disease progression

Reaching task

Comparison to KINARM

- 16 patients in group 2 also underwent hand tracker
- Correlate UPDRS OFF and ON meds
- rho significant if red shading

		Reaching	Reverse Reaching
KINARM	OFF	-0.1275	-0.396
	ON	0.0614	0.0963
Hand tracker	OFF	-0.5393	-0.5694
	ON	0.526	0.3711

Discussion

KINARM

- Need to optimize data collection and processing for <u>patients with PD</u>
- There is utility in measuring a subgroup of signs with mobile hand tracking

Acknowlegdement

- Personnel
 - Pauline Gaprielian: Masters Student
 - Dr. Stephen H. Scott: Developer of KINARM
 - Dr. Giovanna Pari: Movement Disorders neurologist
 - Dr. Stuart Reid: Movement Disorders neurologist
 - Kim Moore: KINARM research assistant
- Funding
 - 2013/14 AHSC AFP Innovation Fund

