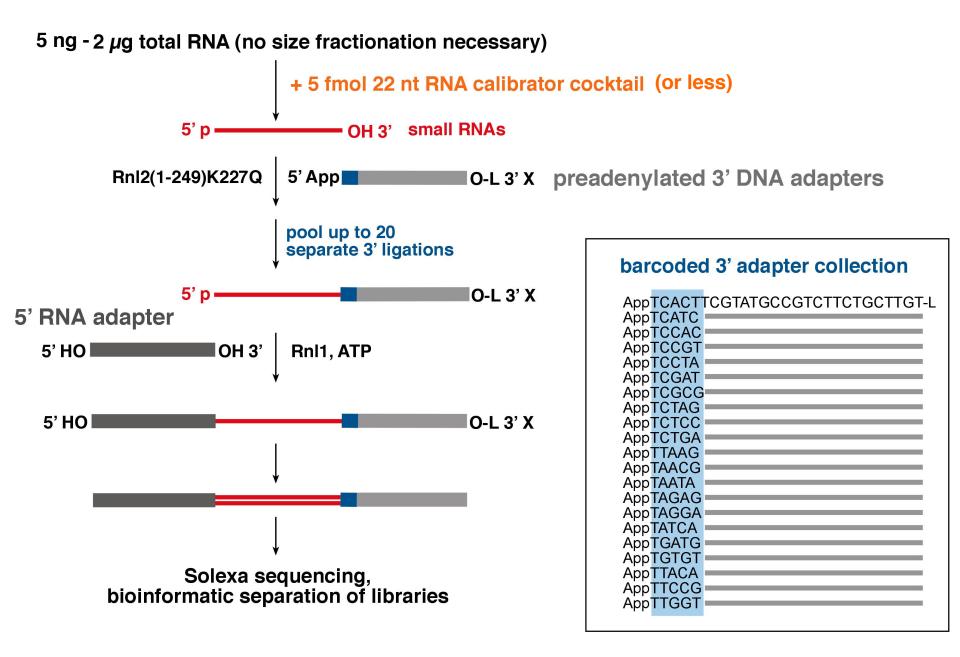
microRNA-guided diagnostics for neuroendocrine tumors

Neil Renwick Dept Pathology and Molecular Medicine Queen's University

SEAMO Research and Innovation Showcase Isabel Bader Centre for the Performing Arts June 6, 2018

Neuroendocrine tumors

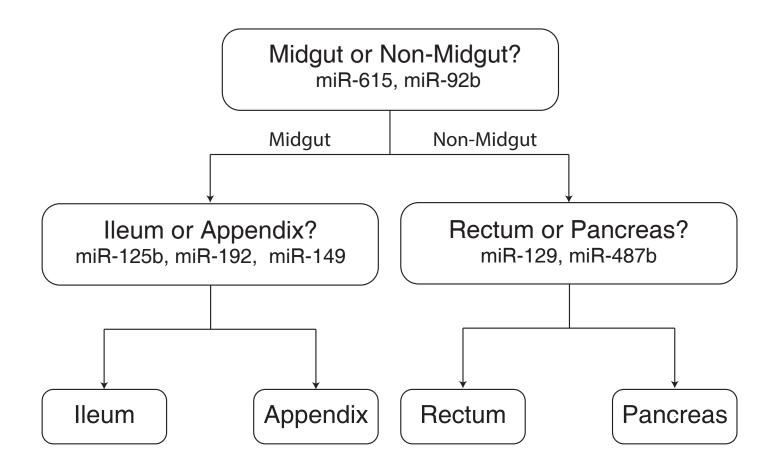
- Group of histologically similar neoplasms, likely arising from neuroendocrine cells
- Arise throughout the body, particularly in the pancreas, gastrointestinal tract, lungs, and endocrine glands, and also skin and other organs
- Hard to diagnose, often metastatic at presentation, and hard to monitor
- field desperately needs tissue and circulating biomarkers to guide clinical decision-making

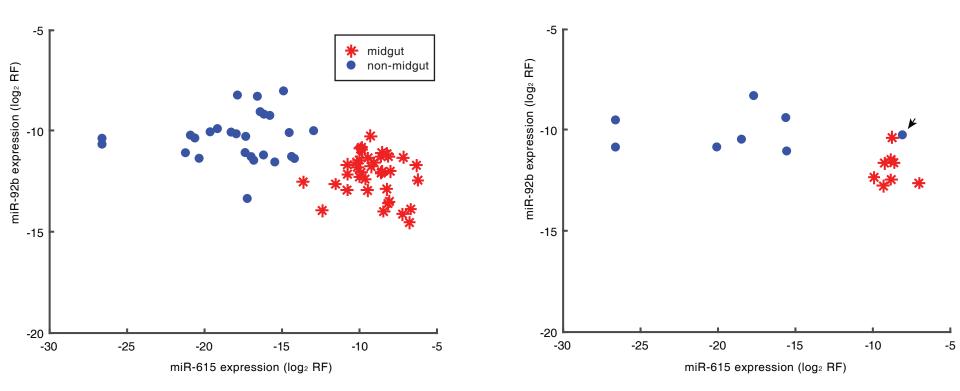

microRNAs

- are small RNA regulatory molecules
- are abundantly expressed
- exhibit cell-type and disease-stage specificity
- Are stable in solid (fresh and archived tissues and cell lines) and liquid (serum and plamsa) clinical samples

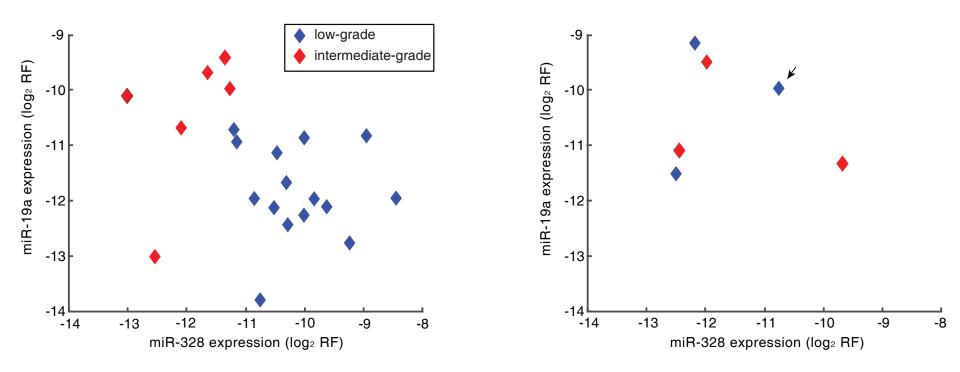
Proof-of-concept: GEP-NET study

- Obtained 81 tissue blocks from 27 pancreatic, 31 ileal, 15 appendiceal, and 8 rectal NETs
- Isolated and quality controlled total RNA, generated microRNA profiles through small RNA sequencing
- Performed data preprocessing, removing three samples from further analysis
- Performed high expression analyses
- Generated a microRNA-based classifier for classifying and (almost) grading NETs


Bar-coded small RNA library preparation with ext. standard

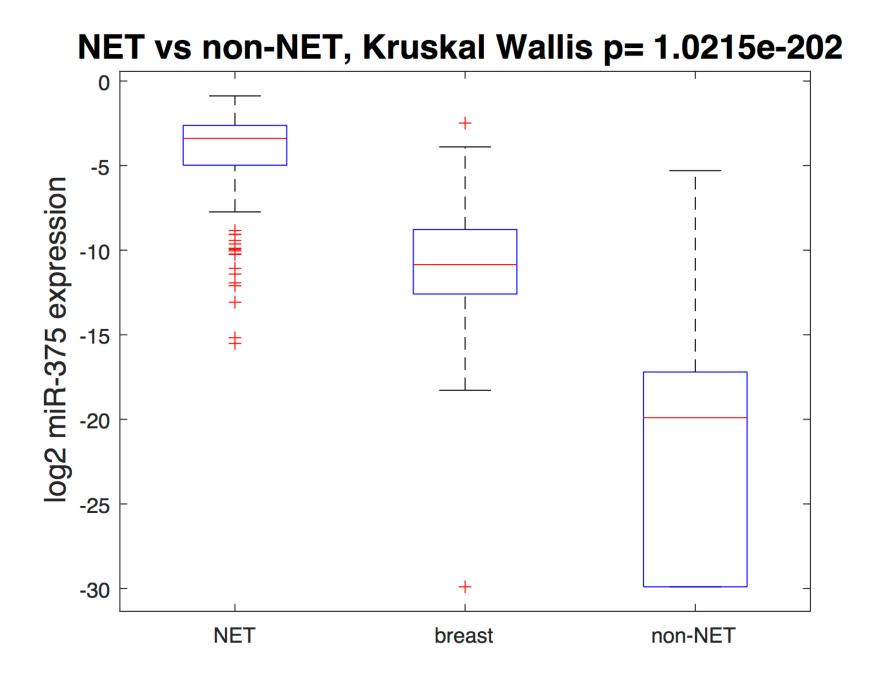

High expression analyses for GEP-NETs

Discovery set		Validation set	
	median % of miRNA in		median % of miRNA in
miRNA	all samples	miRNA	all samples
miR-375	16.6	miR-375	20.2
miR-143	4.9	miR-143	5.3
miR-7	3.9	miR-21	3.9
miR-21	3.3	miR-7	3.2
miR-26a	2.0	miR-192	1.9
miR-125b	1.4	miR-200a	1.4
miR-192	1.4	miR-141	1.4
let-7a	1.3	miR-26a	1.4
miR-29a	1.3	miR-125b	1.2
miR-101	1.2	miR-194	1.2
miR-125a	1.1	miR-27b	1.2
	median % of miRNA		median % of miRNA
miRNA cistron	cistron in all samples	miRNA cistron	cistron in all samples
cluster-mir-375(1)	16.6	cluster-mir-375(1)	20.2
cluster-mir-98(13)	6.9	cluster-mir-143(2)	5.7
cluster-mir-143(2)	5.4	cluster-mir-98(13)	5.5
cluster-mir-7-1(3)	3.9	cluster-mir-21(1)	3.9

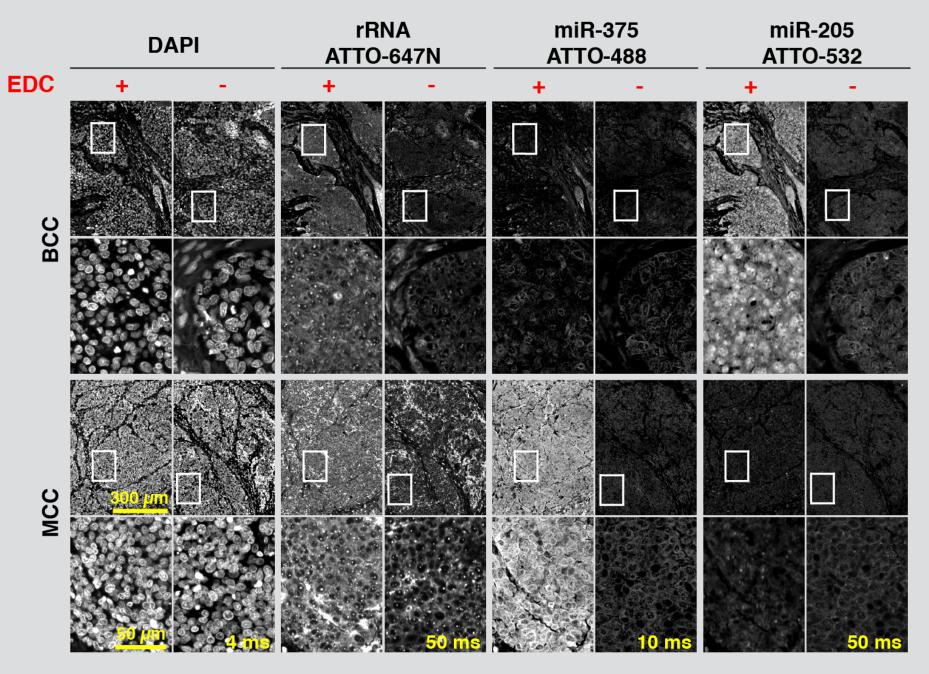

miRNA-based classification of GI-NETs

Midgut vs non-midgut NETs

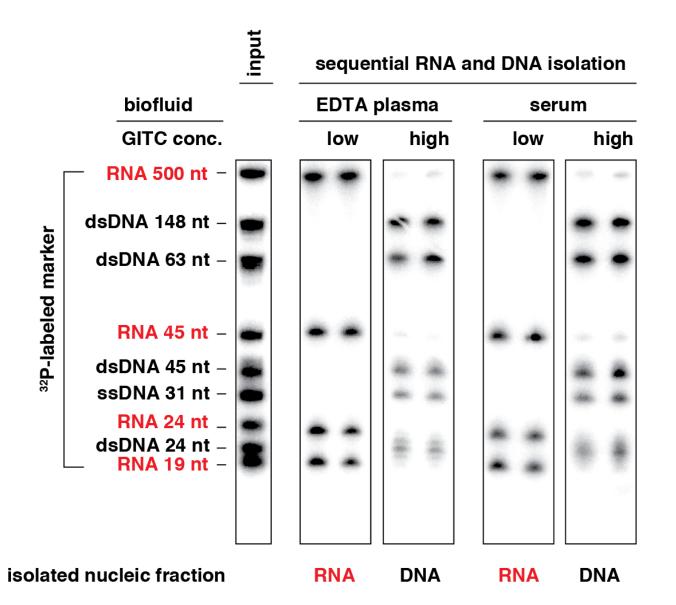
Low- vs intermediate-grade pancreatic NETs

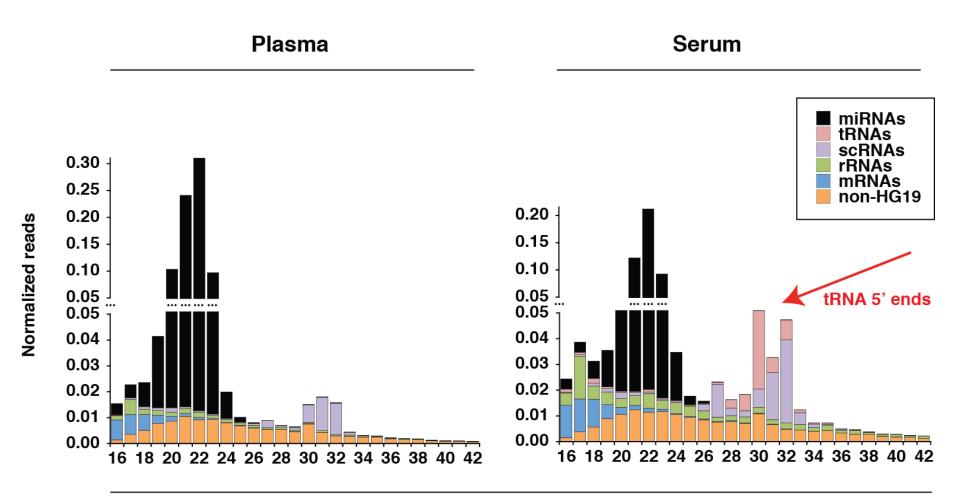


Summary


- microRNAs can be used to classify GEP-NETs by anatomic site-of-origin
- microRNAs can likely be used to grade pancreatic NETs but further testing is required
- miR-375 is abundantly expressed in all GEP-NETs and may be valuable tissue and circulatory biomarkers for this disease

Showcase


- small RNA profiling of all NETs
- microRNA fluorescence in situ hybridization
- plasma microRNA profiling
- microRNA sequence reannotation
- functional characterization of relevant microRNAs


EDC fixation improves retention of long and short RNAs

Quality control of RNA and DNA recovery and separation

Average sample composition in normal study subjects

Read length (nt)

microRNA reannotation

>hsa-mir-205			
TCCTTCATTCCACCGGAGTCTGT		53756	1
TCCTTCATTCCACCGGAGTCTG			1
TCCTTCATTCCACCGGAGTCT			1
CTTCATTCCACCGGAGTCTGT		1658	1
CTTCATTCCACCGGAGTCTG		1585	1
TCCTTCATTCCACCGGAGTC		879	1
TCCTTCATTCCACCGGAGT		656	1
CTTCATTCCACCGGAGTCT		487	1
CITCATTCCACCGGAGTCT			_
	GATTTCAGTGGAGTGAAGTTCA	441	1
	GATTTCAGTGGAGTGAAGTTC	182	1
TCCTTCATTCCACCGGAGTCTGTC		83	1
TCCTTCATTCCACCGGAG		67	1
TTCCACCGGAGTCTGT		47	1
CCTTCATTCCACCGGAGTCTGT		36	1
ATTCCACCGGAGTCTGT		34	1
CTTCATTCCACCGGAGTC		29	1
CCTTCATTCCACCGGAGTCTG		25	1
TCCTTCATTCCACCGGAGTCTGTCT		24	1
ATTCCACCGGAGTCTG		23	1
ATTCCACCOGAGTCTG	ATTTCAGTGGAGTGAAGTTCA	13	1
TCCTTCATTCCACCGGA	ATTICAGTOGAGTOGAGTOGAGTICA		1
		13	_
CCTTCATTCCACCGGAGTCT		11	1
CTTCATTCCACCGGAGT		10	1
TTCATTCCACCGGAGTCTG		91	
CATTCCACCGGAGTCTG		81	
	AGTGGAGTGAAGTTCA	51	
TCATTCCACCGGAGTCTG		51	
TTCATTCCACCGGAGTCTGT		51	
	TTTCAGTGGAGTGAAGTTCA	4 1	
TCATTCCACCGGAGTCT		4 1	
CATTCCACCGGAGTCTGT		4 1	
CATTCCACCGGAGTCT		3 1	
TTCATTCCACCGGAGTCT		31	
TreatreeAccookerer	ATTTCAGTGGAGTGAAGTTC	31	
CTTCATTCCACCGGAGTCTGTC	ATTICAGTOGAGTGAAGTTC		
CTICATICCACCOGAGICIGIC		21	
	GATTTCAGTGGAGTGAAGTT	21	
CTTCATTCCACCGGAG		11	
	CCAGATTTCAGTGGAGTGAAGTT	11	
	AGATTTCAGTGGAGTGAAGTTC	11	
	TCAGTGGAGTGAAGTTC	11	
TGTCCTTCATTCCACCGGAGTCT		11	
GCTTCTCTTGTCCTTCATTCCACCGGAGTCTGTCTCATACCCAA	CCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATG		

sequence evidence criteria supporting microRNA existence include:

non-mapping to other non-coding RNAs sufficent read mapping bimodal read distribution supportive RNA folding 5' end uracil 5' end processing evolutionary conservation

Acknowledgments

- Laboratory of Translational RNA Biology, Queen's University: Justin Wong, Blake Pyman, Kathrin Tyrsyhkin, Xiaojing Yang, Neil Renwick
- Queen's Cancer Research Institute: Andrew Craig, Lois Mulligan, Xiaolong Yang
- Neuroendocrine Tumor Clinic, Odette Cancer Center, Sunnybrook Health Sciences Center: Simron Singh
- Laboratory of RNA Molecular Biology, The Rockefeller University: Klaas Max, Thomas Tuschl
- Weill Cornell Medical College of Cornell University: Nicole Panarelli, Paula Ginter, Yao-Tseng Chen
- Funding: SEAMO AHSC Innovation Fund, Queen's Research Leaders' Fund, CFI John R. Evans Leader's Fund